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1III Linear, Active Two-Ports

III Linear, Active Two-Ports

Small-signal components and circuits are often characterized by sets of two-port
parameters. They may be used for calculating the interaction between the two-port and a sur-
rounding network on a frequency by frequency basis. Practical circuit design problems are
often more involved and may include other topics, for instance choosing between alternative
components and circuit realizations in view of, for instance, stability or ease of tuning. The
concepts and methods that are presented below support that type of work, where we first shall
focus on concepts and results that are based directly on two-port parameters. They are measur-
able and therefore less prone to uncertainty about coverage than analytical network methods
based on simplified theoretical device models.

Dealing with RF circuits there are two basic approaches to two-port parameters, either
scattering parameters - also called s-parameters - or the traditional admittance, impedance and
hybrid types - y, z, h, g - of small-signal parameters. S-parameters relate a set of incident and
reflected wave quantities that are defined in terms of the port voltages and currents. They have
the advantage of being simple to measure at high frequencies. The traditional parameter types
constrain port voltages and currents by terminal conditions that are open or short circuits, and
they are difficult to establish in practice at high frequencies. However, the conventional
parameter types, especially the y-parameters, are often more informative in presentation of
concepts and methods from an electronic circuit design point of view, than are s-parameters.
Therefore, we start traditionally by introducing y-parameters and use them to describe basic
power gain and stability measures. They are all properties, which keep their interpretation
regardless of the small-signal parameter type that was used in the underlying measurements
or calculations. Conversion between the different parameter types is a routine task that is
included in many instruments and design programs. A excellent, thorough presentation based
on s-parameters may be found in Ref.[1]
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2 Linear, Active Two-Ports

III-1 Y-Parameter Characterization of Two-Ports

Y-parameters for a two-port are the matrix elements in the linear relationships that

Fig.1 Representation of Y-parameters in (a) block form, (b) the corresponding circuit
diagram, and (c) as a signal flow-graph.

express the port currents in terms of the port voltages,

(1)

or in short matrix notation

(2)

The last version of the Y-matrix in Eq.(1) shows the elements by real part conductances, gij,
and imaginary part susceptances, bij. Y-parameters may be visualized in block, equivalent
circuit, or signal flow graph forms as indicated by Fig.1. The preference of y-parameters
among the traditional parameter types is ascribed to the fact, that linear small-signal RF
models for many active devices are of Π shape in an approximation that commonly encom-
passes all but ultimate high-frequency limits. The Π structure relates directly to a y-parameter
description, which gets the advantage of being interpretable in terms of the physical structure
of the device, in some cases the parameters may even be traced back to include the bias
dependency of the device. A simple example is the transistor equivalent circuit in Fig.2.

Fig.2 Π-equivalent circuit for transistor.

(3)

Had the transistor been a bipolar transistor, the most dominating parameters could be estimat-
ed from the basic device relations, cf. refs.[2] chap.7 or [3] p.255ff, p.610ff,
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3III-1 Y-Parameter Characterization of Two-Ports

where IC is the collector DC bias current, βF is the current gain, and fT is the cut-off frequen-

(4)

cy where the extrapolated common emitter transistor current gain equals one. In an initial
approximation βF, fT and the remaining parameters may be taken as constants.

One way of obtaining y-parameters from a circuit diagram should be noticed from
Fig.2 and Eq.(3). Assume short circuited output terminals, i.e. v2 = 0 , and apply a unit
voltage generator across the input terminals. Then the input and the output port currents i1,
i2 - both with positive direction towards the two-port - equal y11 and y21 respectively. Short
circuiting the input terminals and applying a unit voltage to the output terminals provides
correspondingly y12 and y22 from i1 and i2.

Passive and Active Two-Ports

A two-port that can deliver net-power to a surrounding network at a given frequency
is called active at that frequency. The contrast is a passive two-port, which is further classified
as being either lossless in the limit case of zero power consumption or strictly passive if it
consumes positive net power. Note that we take activity and passivity as frequency dependent
properties and include only sinusoidal steady-state behavior. Enlarged scopes are sometimes
required in more fundamental considerations and here the reader should consult literature on
circuit theory like ref.[4]. Dependence on frequency is commonly not written explicitly
below. Unless stated otherwise this should always be assumed.

The group of passive two-ports that contains passive components only, for instance
capacitors, resistors, and inductors but no controlled sources, are also reciprocal, which implies
y12=y21, cf.[5] chap.5 or [7] sec.4.5. For this group passivity applies at all frequencies.
Active two-ports are often linearizations of electron device characteristics around a DC-bias
point. The power gain, which is ability of the device to convert DC power to amplified small-
signals, depends on frequency. Typically, the power gain of a transistor decreases as frequency
raises and eventually it starts consuming net power.

In mathematical terms, the total power consumed by a two-port is expressed by the
inner vector product1 of the terminal voltages and currents,

(5)

1 ) The symbol * denotes the Hermitian operation, which transposes vectors and matrices
and complex conjugates the elements.
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4 Linear, Active Two-Ports

Passivity requires Ptot ≥ 0 for any v. It is the same to say that the Hermitian form above must
be positive semidefinite or, equivalently, that all principal minors in the y-parameter determi-
nant, which is the set of subdeterminants that can be taken symmetrically around the diagonal,
are positive or zero. From the determinant,

we get three conditions,

(6)

Had we confined our theory to one ports, the passivity requirement is a non-negative real part

(7)

of the admittance. The two first requirements above are the one port condition at either port
if the opposite port is short-circuited. Introducing the rewriting,

the third condition in Eq.(7) is transformed

(8)

The last line provides the passivity requirement

(9)

Here, the boundary to one is a direct consequence of Eq.(9) while the boundary to zero

(10)

appears because the last term in the equation is nonnegative.

The quantity U is the so-called Mason’s Unilateral Power Gain. As the name
suggests, U has a wider interpretation than just being an indicator for passivity. It is proven
in Appendix III-A that U is invariant to passive, lossless encapsulation of the two-port, i.e.
a new two-port build like Fig.3 by encapsulating the original two-port in a passive network
of capacitors and inductors, coupled or uncoupled, will give the same U figure. Of particular
interest is here the network that makes the new two-port unilateral, which means a resultant
zero-valued feedback with ŷ12=0. In this case U expresses the power gain of the combined
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5III-1 Y-Parameter Characterization of Two-Ports

two-port when the source and load admittances maximize the gain by simultaneous conjugated

Fig.3 Lossless encapsulation of a two-port. The maximum unilateral power gain U is the
same for the intrinsic, Y, and the encapsulated two-port, Ŷ.

matching at the ports.

Lossless encapsulations includes also device lead substitutions that turn common emit-
ter/source configurations into common base/gate or common collector/drain configurations.
Thus, U for an active device does not depend on configuration but remain the same whether
a transistor is employed in common emitter, base, or collector, respectively source, gate, or
drain configurations.

Considering experimental y-parameters, U commonly decreases with increasing

Fig.4 Maximum unilateral power gain U for a bipolar microwave transistor. The data
sheets specify fT= 6 GHz, the maximum frequency of oscillation is fmax= 13 GHz

frequency. The frequency where U passes one - equivalently 0 dB - is the frequency where
the device turns passive. This frequency is called the maximum frequency of oscillation, fmax.
The device cannot provide power gain and sustain oscillations - planned or spurious - in any
passive embedding above fmax. Fig.4 shows an example of U based on experimental transistor
data. It is worth noticing that the maximum frequency of oscillation usually is higher than the
cut-off frequency fT that traditionally is used to specify the frequency limitation of transistors.
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6 Linear, Active Two-Ports

Two-Port Power Gains

Active two-ports may be driven and loaded to give net power gain. With a two-port

Fig.5 Two-port between external generator and load. The signal flow-graph may be used
for calculating gains or input and output admittances.

inserted between a generator and a load as shown in Fig.5, we distinguish between three types
of power gain2.

The power gains depend upon the y-parameters and - in different ways - on the generator and

(11)

(12)

(13)

load admittances. To see how the gains compare, the basic definitions provide immediately

since, for a given available generator power Pav , the input power Pin will always be less than

(14)

or equal to the available power. Correspondingly, the output available power Pout is always
greater than or equal to the power delivered to the load PL.

Besides terminating ports, the admittances yG and yL determine the input and output
admittances of the port through

(15)

(16)

2 ) Operating power gain is also called simple power gain or just power gain.
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7III-1 Y-Parameter Characterization of Two-Ports

These relationships are important for the following power and gain calculations. To see the
differences between the power gains, expressions for the various power quantities must first
be established. We have directly,

where gin is the real part of the input admittance. The voltage gain of the port is

(17)

so the power delivered to the load is given by,

(18)

where gL is the load conductance from yL=gL+jbL. The available generator power becomes

(19)

The last rewriting is due to the fact, that the generator current IG divides between the genera-

(20)

tor and the two-port input admittances. The available output power Pout is expressed through
the output short-circuit current i2|v2=0,

where the last part of (20) was used with the condition that yin reduces to y11 when the output

(21)

port is short-circuited letting yL → ∞. Now expressions for all the powers in Eq.(13) are
established and the gains may be stated explicitly as follows.

(22)

(23)

(24)
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8 Linear, Active Two-Ports

For a given two-port, i.e. with known y-parameters, the operating power gain depends only
upon the load admittance yL, the available power gain depends solely upon the generator
admittance yG, whereas the transducer power gain includes the effects of both yL and yG. Note
that Gp and Gav require gin > 0 and gout > 0 respectively to stay meaningful.

Optimal Power Gain

A natural question to ask at this stage is whether or not it is possible to maximize
gains by adjusting the load and generator admittances. It is supposed that yL and yG are
passive, so they have nonnegative real parts. Maximizing gain is not always possible. If it is,
however, we may realize that a admittance pair yL,opt, yG,opt that maximizes the transducer
gain, simultaneously holds the load that maximizes the simple gain and the generator admit-
tance that maximizes the available gain. To see this, suppose we have chosen a load that
optimizes Gp, i.e.

where the input admittance is calculated through Eq.(15). If we now adjust the generator

(25)

admittance to match the input admittance conjugatedly, i.e.

the corresponding transducer gain is seen to be the same as the operating gain from Eq.(25),

(26)

(27)

Here, the starting version of Gtr follows from Eq.(23) with y11 substituted through Eq.(15).
An inequality in (14) states that the transducer gain is always less than or equal to the
operating power gain. When the two are equal and the operating power gain has maximum
as above, the transducer gain must be maximum too. With a given available generator power,
optimal transducer gain implies furthermore that the output power is maximized and conse-
quently, that the load admittance is conjugatedly matched to the output port. A similar arguing
as the one above could be conducted stating from the available power gain and an initial
choice of yG. Then we would get similar conditions for Gav and Gtr. Therefore, if the power
gains of a two-port can be optimized, the same figure applies to all types of gain, i.e.

(28)

J.Vidkjær



9III-1 Y-Parameter Characterization of Two-Ports

so there is no need to distinguish between different gain types in the maximum. The gain here
is simply called Gmax. The generator and load admittances that provide maximum gains give
conjugated matching at both ports simultaneously. By Eqs.(15),(16) they are related through

The optimal generator and load admittances could be found by solving the two

(29)

equations above. Alternatively, one of the gain expressions in Eqs.(22) to (24) could be opti-
mized directly. We shall follow the last approach - the first one is conducted in ref.[6] -
by taking outset in the operating power gain and find the value yL=yL,opt where ∂Gp/∂yL
becomes zero. Then yG,opt is the complex conjugate of the corresponding two-port input
admittance. To ease calculations the following auxiliary variables are introduced

The input conductance and the operating power gain are expressed

(30)

(31)

The steps in the calculations are first to optimize with respect to bL trough b2. Next the result

(32)

(33)

bL,opt is inserted into Eq.(33), which now is optimized with respect to gL trough g2. Finally
the combined result gL,opt+jbL,opt is applied to the first part of Eq.(29) to get the optimal
generator admittance. Albeit simple in outline the calculations are somewhat lengthy, so they
are detailed separately in Appendix III-B. The following expressions summarize the resultant
optimal generator and load admittances,

(34)

(35)
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10 Linear, Active Two-Ports

The maximum gain that can be obtained with the two-port is expressed,

Quantity M, which determines the optimal conductances in Eqs.(34),(35) and partly the

(36)

maximum gain denominator, is given by

The expression indicates that not all two-ports have optimal gains. Keeping consistency in the

(37)

conductances that are given by Eqs.(34),(35), M must be real and positive. Therefore, the
quantity inside the square root must fulfill the condition

If the Y-parameters of a two-port do not satisfy this criterion, the two-port has no limited

(38)

optimal power gain and it cannot be simultaneously matched at both ports. We shall see below
that it may turn unstable if we try to do so.

Stability of Active Two-Ports

Two-ports that map passive loads into input admittances with negative real parts or
passive generator admittances into output admittances with negative real parts may be
managed to sustain oscillations. An example is shown in Fig.6, where a passive load yL by
Eq.(15) is supposed to give an input admittance with gin < 0 at frequency ω0 . An admittance
YG of opposite sign is passive since gG> 0. Connected across the input terminals YG gives
a total parallel admittance of zero, which is equivalent to an undamped parallel circuit tuned
to ω0. Once initiated to the voltage amplitude v1, oscillations are sustained while power is
delivered to the external conductance gG. There are no external generators, so this power must
come from the two-port.

A two-port through which passive load and generator admittances cannot transform
to input and output impedances with negative real parts at a given frequency are said to be
absolutely stable at that frequency.3 If the two-port is not absolutely stable, it called potential-
ly unstable. It should be stressed here that absolute stability will not prevent oscillations if
there is a feedback path between the ports outside the two-port. On the other hand, potential

3 ) If you find the handling of especially limit situations with zero-valued real parts
somewhat sloppy, consult ref.[4] for a throughout discussion of the circuit theoretical
aspects of these matters.

J.Vidkjær



11III-1 Y-Parameter Characterization of Two-Ports

instability means the ability of the two-port to oscillate for some - not all - passive termina-

Fig.6 Example of an oscillatory circuit with a two-port that maps the passive admittance
yL into an input admittance having negative real part, gin(ω0)<0.

tions. Had we, for instance, in the example of Fig.6 used gG > -gin(ω0) giving a total positive
conductance at the input port, any initiated oscillation would decay.

It turns out that criteria for absolute stability become equal to the requirements for
a finite maximum power gain of the two-port. Cast in that way we may consider the oscillator
setup above as a two-port with infinite gain. To prove the conditions for absolute stability we
start introducing the so-called short circuit stability criteria,

The requirements come about through Eqs.(15),(16). If yG → ∞ or yL → ∞ while still being

(39)

passive, the input and output admittances approach g11 and g22 respectively, and they must
stay positive. With unilateral two-ports where y12=0, Eq.(39) holds the only necessities for
absolute stability. In the general case the effect of internal feedback must be investigated. To
conduct this we take outset in the auxiliary variables and the input conductance expression
from Eqs.(30) to (32). However, instead of considering the sign of gin directly, the calculations
follow more easily by investigation of quantity T that has the same sign when g11>0,

The first bracket in the last expression for T has a minimum value of zero as b2 through bL

(40)

may take any value keeping yL passive. Load susceptance for minimum T therefore becomes

This is seen to be the same susceptance that gave maximum power gains by Eq.(35). The

(41)

second bracket in T may be zero if
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12 Linear, Active Two-Ports

With second bracket becoming zero, T gets negative sign and the two-port is potentially

(42)

unstable. To secure absolute stability, Eq.(42) must have no solution corresponding to a
passive load where gL≥0, so as a first condition we get,

If this is fulfilled, T will take minimum value for gL=0 where g2=g22. Absolute stability, i.e.

(43)

T staying positive, now requires

The last version needs g22>0 as presupposed. It is equivalent to the condition for maximum

(44)

power gain stated formerly through Eqs.(37),(38) if the possibility of equality is disregarded.

Investigating for absolute stability may be based on the M quantity above with the
short-circuit criteria from Eq.(39). If M is positive, calculations of the port impedances and
maximum gain follow directly using the expressions in Eqs.(34) to (36). While the short-
circuit conditions are common, criteria equivalent to M are usually found in literature and data
sheets. When Eq.(43) is met, the inequality in the first expression of Eq.(44) applies prior to
squaring and we have

Together with the short-circuit stability requirements, the last condition is called Llewellyn’s

(45)

absolute stability conditions. A simple reorganization brings it to the form known as Rollet’s
stability condition4

(46)

4 ) Other equivalent conditions that can be derived from Eq.(45) are
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13III-1 Y-Parameter Characterization of Two-Ports

As demonstrated by Fig.7, Rollet’s stability factor K has the advantage of being smooth if

Fig.7 Stability factors and gain functions in a bipolar microwave transistor. Gray zones
indicate frequency ranges of absolutely stability. The transistor is passive in the
high frequency range.

it is calculated as a function of frequency. Compared to other criteria, it is therefore well
suited for numerical treatment in computer aided design tasks. Using Eq.(44) the relationship
between K and M is expressed,

Substituting M - only the positive value implies absolute stability - the maximum gain from

(47)

Eq.(36) may be rewritten,

The quantity Gms is called the maximum stable gain
5. In principle it is the maximum

(48)

gain of a non-unilateral two-port at the boundary to absolute stability with K=1. If the actual
two-port is potentially unstable, Gms is the maximum gain that may be obtained if the two-port
is extended placing conductances across its ports as shown in Fig.8 below. The y-parameters
including extensions become

5 ) In literature and device data sheets Gms is sometimes denoted MSG (Maximum
Stable Gain) and Gmax may be called MAG (Maximum Available Gain). The latter
term is misleading in the sense that if a gain maximum exists, the operating, the
transducer, and the available gains were shown to be the same on page 8 above.
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14 Linear, Active Two-Ports

This two-port has clearly the same Gms as the original one but the new K-factor, which we

(49)

get by inserting the new parameters into Eq.(46), may be raised to one or even higher by
proper selection of gA and gB. If a given two-port without extension is absolutely stable, it
has a maximum gain Gmax and the K-factor exceeds one. According to Eq.(48), Gmax should
fall below Gms, and this is also observed in the absolutely stable frequency band of Fig.7. The
Gms parameter has commonly no practical importance in this case although we may think of
it as the maximum stable gain that might be attained if negative conductances are connected
across the ports up to the point where the resultant K-factor becomes one.

Stabilizing Active Two-Ports

Fig.8 Resistive extension of a two-port. Conductances gA, gB control the stability factor
K but keep the maximum stable gain Gms unaffected.

RF transistors are commonly potentially unstable in the greater part of the frequency
range where they may give net power gain, a fact that is clearly displayed by the experimental
data in Fig.7. Absolute stability means that the two-port will stay stable with any passive
terminations and with predictable, limited maximum power gain. By contrast, any power gain
may be supported, if the two-port is potentially unstable, and we consider the situation of self-
sustained oscillations as one of infinite gain. The potentially unstable two-ports may still be
useful, if it can be embedded to provide the required, limited gain without start oscillating.
There are two main approaches to reach that goal. We may either reduce gain by adjusting
matching conditions, possibly by extending with additional resistors, or we may add circuitry
to reduce feedback. We shall start considering the first method, where at most we are targeting
the maximum stable gain. By the second method - known as neutralization and discussed on
page 26 - we may reach gain corresponding to the U function at the costs of more complex
circuits.

An obvious way of exerting control over the stability properties of a two-port is
shown in Fig.9. The real parts of the generator and load admittances are included into a hypo-
thetical augmented two-port for stability computations. The generator and load conductances
presented at the ports should be chosen to fulfil the stability conditions from Eqs.(39) and (46)
with y-parameters for the augmented two-port,

(50)
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15III-1 Y-Parameter Characterization of Two-Ports

By this technique it is ensured that the terminated two-port stays stable with any generator and

Fig.9 Augmentation of two-port by the generator and load conductances for stability
calculations. With K>1 the setup will stay stable for any setting of the susceptances
bG and bL.

load susceptances. To find the pertinent power gains, however, it is not the parameters of the
augmented two-port but the parameters of the original one that must be used in Eqs.(22) to
(24) together with yG and yL for finding the type of gain that is appropriate and defined. The
latter question concerns the operational and the available power gains, where it may happen
that the terminated two-port gets input or output conductances that are zero or negative, so
these gain functions become meaningless.

While the partitioning in Fig.9 was dictated by our stability discussion, practical
single stage RF amplifier design commonly gets a structure like Fig.10. Lossless matching
networks are inserted at either side of the active two-port to transform given generator and
load admittances to the admittances that are required at the ports to the active device. If the
device is absolutely stable, either by itself or by the extension method in Fig.8, simultaneous
conjugated matching at the device ports provides maximum gain. Since it also implies transfer
of available power, i.e. maximum power, to and from the device, and since the matching
networks cannot absorb power, the power transfers from the generator and to the load are
maximum too, so the outer ports must also be conjugatedly matched. This will be proven
formally below.

Fig.10 RF-amplifier structure. Matching ratios of input over available powers Mmch are the
same on either side of lossless networks and equals one with conjugated matching
to an absolutely stable device.

Designing without simultaneous matching at both device ports, which is a necessity
if the device two-port is potentially unstable, the outer generator and load admittances, YG and
YL, may still be transformed through lossless networks to the generator and load admittances
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16 Linear, Active Two-Ports

that are present at the device ports, yG and yL respectively. One design objective is here to

Fig.11 Power flow through an lossless two-port. Pav and Pout are available, Pin and PL are
deposited powers. Notation follows the power gain section, page 6 ff.

get a K-factor in the augmented estimation from Fig.9, which as a minimum requirement
exceeds one. In this type of designs it is important to realize that the mismatching around the
device two-port pertains to the outer connection ports too.

Introducing a measure of matching, Mmch, as the ratio of power delivered to a load
over the available power - sometimes called the mismatch factor,[7] - this ratio remains the
same at either side of a lossless admittance transforming network. To see this we consider the
lossless two-port connection in Fig.11, were we shortly return to the notation in the power
gain section on page 6 in order to utilize previous results directly. Before considering
constraints set by the lossless two-port, the power expressions from Eqs.(17) through (21) give
the matching factors directly in terms of two connected admittances by,

A reciprocal lossless matching network may be described by y-parameters of susceptances,

(51)

i.e. purely imaginary components. This may be realized from fulfilling the passivity require-
ment in Eq.(7) with equal to zero conditions only, so the y-parameters are written

Substituting this set of parameters into the expression for yin=gin+jbin from Eq.(15) yields,

(52)

(53)
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17III-1 Y-Parameter Characterization of Two-Ports

with load admittance components yL=gL+jbL. When this result is inserted into Eq.(22) using
|y21|

2=b21
2, we get a formal proof of the reasonable result that the operating power gain of

a lossless two-port is one.

A similar development starting from yout in Eq.(16) would show that the available power gain

(54)

through a lossless two-port is one too. By the power gain definitions, Eqs.(11) to (13), the
matching ratio at either side of the two-port both become equal to the transducer power gain
and thereby also jointly equal,

Thus, the matching ratio stays constant across a lossless two-port whether it is conjugatedly

(55)

matched with Mmch=1 or mismatched with ratios below one.
6

There are situations where matching is an ultimate requirement, for instance set by
regulations to equipment employed in common installations. To accomplish this we may resort
to the technique in Fig.8 and adjust real parts of y11 or y22 or both in the active two-port by
parallel connecting resistors. The decision of adding to the input, output, or to both conduc-
tances may be guided by other concerns. We shall see later that an additional resistive loss
at the input may decrease the noise performance of the amplifier. An additional output
conductance, on the other hand, may limit the power output capability of the active device.

Even if an active device is absolutely stable, either inherently or by resistive exten-
sions, it might still be useful in a final design to estimate the stability factor for the augmenta-
tion encompassing the load and generator admittances. If the device itself is close to being
potentially unstable having a K-factor close to one, the factor of the augmentation may
indicate how sensitive the complete circuit is with respect to tuning and other parameter
variations. The K-factor in the augmented estimation may be used as a degree-of-stability
indicator like phase or gain margins in LF designs. This property is discussed in the following
two examples, where the first one demonstrates why a K-factor of five or more is a preferable
choice in design.

6 ) In microwave literature and data-sheets the grade of mismatch is often expressed by
the so-called standing wave ratio, SWR ( sometimes VSWR for voltage standing
wave ratio ). The relationship to Mmch is, cf.[7] sec.5.7,

J.Vidkjær



18 Linear, Active Two-Ports

Example III-1-1 ( degree of stability )

To see the K-factor in the role of a degree-of-stability indication we consider the

Fig.12 Simple, symmetric narrowband FET amplifier (a) with transistor equivalent circuit
in (b). Stability conditions are calculated by the two-port in (c).

primitive amplifier example in Fig.12. A FET with the simple equivalent circuit in Fig.12b
is enclosed between two parallel, equally tuned narrowbanded resonance circuits. The input
and output capacitors are supposed to compensate for the transistor input and output capaci-
tances to given a total capacitance of Cp in both circuits, i.e.

The two-port we consider for stability calculations is shown by Fig.12c. The y-parameter

(56)

matrix is expressed through yp(s), which represents the admittance function of the parallel
tunings at either side of the transistor

The transfer impedance of the amplifier is expressed,

(57)

The first rewriting uses the fact that the Z-parameter matrix is the inverse of the Y-parameter

(58)

matrix. Around the frequency fo, where the circuits are tuned, yp is expressed through the
narrowband approximation from chap.II p.16, i.e.
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Here sp0 is the upper half-plane zero of yp(s). Had the transistor been unilateral,

(59)

y12=0, there would have been a double pole at sp0 in the amplifier transfer impedance,
cf.Eq.(58). The feedback in the transistor changes the picture. The admittance of Cμ is
supposed to be much smaller than the transconductance gm at the center frequency, so we
approximate,

Simplification of y12 to be taken as a constant quantity agrees with our confinement to a

(60)

narrowband frequency interval around f0. Under the same assumptions, the stability factor of
the two-port is related to Δ through,

Introduction of this result to the transfer impedance of Eq.(58) shows explicitly the pole-

(61)

splitting into sp1 and sp2,

(62)

Due to the feedback through Cμ, the poles moves along a line in directions of j½ from the
position of the unilateral double-pole in spo. The smaller K value, the greater displacement
from spo. If K becomes less than one, it is seen from the pole position sketch in Fig.13(a) that
the lower pole moves into the right half of the s-plane and makes the amplifier unstable. So
there is full agreement between this traditional circuit analysis stability condition and the two-
port concepts we have introduced. The frequency responses with various K-values are given
in Fig.13(b), where it is seen that the greater K, the better resemblance to the unilateral limit
K→∞. It explains why a K value of more than five is preferable, if the design goal is to
approximate an ideal unilateral characteristic.
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Example III-1-1 end

Fig.13 Feedback effects in the amplifier from Fig.12. Pole positions, (a), and transfer
characteristics, (b), for various K values corresponding to different Cμ´s.

Example III-1-2 ( amplifier design )

(63)

Design a 500 MHz amplifier with the bipolar transistor MRF8372 at VCE=12.5V, IC= 150mA,
where measurements give the y-parameters in Eq.(63). The amplifier must meet specifications,

- center frequency gain, 15 dB
- simultaneous match to 50Ω at both ports
- amplifier must stay stable without load or/and generator connected
- 3dB bandwidth 45MHz in two stage synchronous tuning

Before starting we notice that the transistor data imply, cf. Eq.(46),

Albeit being absolutely stable the transistor is close to the stability bound at one so the

(64)

requirement of stability without load and source connections is highly sensitive to parameter
variations. However, the transistor has a maximum stable gain of
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Compared to the gain requirement there is room for enlarging the K-factor by resistive

(65)

extension. Introducing the ratio of maximum gain - simultaneous matching is required - over
the maximum stable gain, Eq.(48) may be solved for the K-factor of an extended two-port,

Inserting actual figures provides

(66)

In this design we extend the transistor two-port by permanently adding parallel conductance

(67)

gB across the collector port as indicated by Fig.8. The Kext value above place us more safely
on the proper side regarding stability, in particular if no other admittance are connected across
the device ports. The output conductance of the extended two-port is called g22,ext, and it may
be solved for through the K-factor expression from Eq.(46). We get

Output conductance g22,ext is the only replacement that is required to find the y-

(68)

parameter matrix of the extended two-port compared to the original one in Eq.(63). To find
the generator and load admittances that imply simultaneous matching to the extended two-port,
we start by calculating M from Eq.(47), i.e

Now the optimal generator and load admittances may be found using Eqs.(34),(35),

(69)

(70)
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Augmenting by the generator and load conductances, the stability factor of the amplifier under

(71)

normal operation becomes

As discussed in the previous example, a total stability factor of five or more is a practical

(72)

design criterion that makes the amplifier relatively insensitive to parameter spreadings.
Furthermore it allows us to disregard internal feed-back effects and design the two matching
and tuning networks independent of each other.

Fig.14 Amplifier principle including the data that are determined from gain and stability
requirements.

The results obtained thus far are summarized by Fig.14. The generator and load
impedances presented at the ports to the transistor two-port including the shunting resistor RB
are known. They give simultaneous matchings, so their complex conjugated counterparts are
the input admittances of the transistor. Therefore, the design may be completed from the point
of view, that the two matching networks should transform the extended transistor input and
output admittances to the required generator and load values of 50Ω subject to bandwidth
constraints. The latter implies that the Q-factors at either side of the transistor are equal, Qmc,
and deduced from the specifications by taking into account the gain-bandwidth factor for two
stages, cf. Table I, chap.II, p.33,

(73)

J.Vidkjær



23III-1 Y-Parameter Characterization of Two-Ports

The low impedance level at the input side of the transistor would give unrealistic

Fig.15 Details in design of the input matching network. zin is the input impedance of the
extended transistor when it is matched conjugatedly at the output port.

component values if we attempted a direct parallel tuning here. A better choice is to raise the
impedance level by series connecting a reactance to the transistor input port as indicated by
Fig.15, which is equivalent to Example II-4-1 ( chap.II p.20.). Converted to series form, the
transistor input impedance becomes,

The total series reactance Xis must be chosen to convert rin to parallel form Rpin=50Ω to

(74)

match the generator at the amplifier input port. Simultaneously the capacitive parallel reac-
tance Xip must tune out Xis. We assume here - and in all subsequent calculations - that we
may use series-to-parallel conversions in the simplest form, cf. chap.II,p.20,

Series reactance Xis is the net result of an inductive part XiL and a capacitive part XiC. The

(75)

ratio of XiL - representing storage of magnetic energy - over rin must be twice resultant Q-
factor for the input circuit since rin is only half the resistive loss. The remaining loss comes
from the generator impedance, had it been transformed in a series connection to the transistor
input impedance under matching conditions. Observing that the total inductive reactance
includes a slight contribution xin from the transistor input, inductor Lis becomes

The series capacitance Cis must reduce the inductive reactance to Xis as assumed for imped-

(76)

ance transformation, so the input circuit design is completed by
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(77)

Fig.16 Steps in the design of the output matching network. yout is the output admittance
of the extended transistor two-port when the input is conjugatedly matched.

At the output side neither direct parallel nor direct series tunings give reasonable
component values, so instead the Π-structure in Fig.16(a) is chosen. To get component values
we transform the circuit to a resonance circuit in two steps as shown by Fig.16(b) and (c). The
two series contributions in the last form must equal each other when we have impedance
matching between their parallel forms, 1/gout and RL=ZL=50Ω. The matching requirement give

Imposing bandwidth requirements on the circuit in Fig.16(c) provides,

(78)

The capacitor Cop in the parallel to series transformation includes the output capacitance of

(79)

the transistor. The component Copp to be added in the circuit becomes
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Tuning is the last requirement to the output circuit, and it determines the series inductor Los,

Fig.17 Amplifier functional diagram.

(80)

(81)

Fig.18 Simulation of the amplifier from Fig.17. The transistor was accounted for by an
accurate circuit model extracted from experimental data

The equivalent circuit for the amplifier, which summarizes the results above, is shown
in Fig.17, while Fig.18 presents simulated responses for the circuit, where

(82)
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As seen, we get the expected gain and bandwidth and nearly correct center frequency. The
reflection coefficients with respect to 50Ω have minima that clearly indicate matching at the
center frequency. Despite simplifying assumptions - by disregarding feedback and using series
parallel transformation in simplest form - the design above is rather precise. It provides a
good starting point for subsequent fine tunings either physically using trimmer capacitors or
in computer optimizations, a fact that mainly owes to the possibility in this design to satisfy
specifications with a high K-factor in the augmented stability estimation.

Example III-1-2 end

Neutralization

Fig.19 Parallel connection of two-ports. The resultant Y-matrix is the matrix sum of
matrices for the parallelled two-ports.

The only requirement for absolute stability in unilateral two-ports, i.e. two-ports with
y12=0, is the short-circuit conditions in Eq.(39). One mean of keeping the gain high with a
given device is therefore to add external circuitry that counteracts the internal feedback. The
principle for doing this is suggested by Fig.19. Two two-ports connected in parallel get a total
Y-parameter matrix that is the sum of the individual two-ports. To see this recall that Y-
parameters have the port voltages as driving variables, and they are common for the paral-
lelled ports. The dependent variables are the currents, and they are added at both sides.
Consequently, corresponding y-matrix elements add to give the resultant element,

To make the resultant two-port unilateral is called neutralization, which requires

(83)

(84)
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A unilateral two-port has M=1 in Eqs.(34) to (37), so to get optimum we must arrange
conjugate matching to y11 and y22 at the input and the output port respectively. We get

(85)

Fig.20 Broadband neutralization with transformer. Neutralizing condition y12=-nyn.

Fig.21 Narrowband neutralization of two-port. Neutralizing condition y12=yn.

Two common neutralizing principles are shown in Fig.20 and Fig.21, where the y-
parameters to be parallelled are

(86)

In the last case the added two-port includes a common ground for the ports, a property that
also must apply to the neutralized two-port. However, two-ports to be neutralized represent
often active three-terminal devices and have common ground inherently. Fig.22 illustrates
neutralizations around a transistor with Π-type equivalent circuit. In case the two-port to be
neutralized is of Π-type, where y12=-yμ, the transformer coupling in Fig.20 has the capability
of covering a broad frequency range. Here the counteracting network contains a scaled version
of yμ,

Remember that neutralization also changes the other parameters. In the present case to, cf.

(87)

Eqs.(83) and (86),
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The second and simpler method in Fig.21 requires that yn is the negative of y12. Typically an

Fig.22 Neutralization of transistor feedback capacitance. A coupling capacitor in (b) is to
remind that bias separation between input and output is commonly required.

(88)

inductive yn tunes out a capacitive device feedback at the center frequency of a narrowband
amplifier.

Exact neutralization of active devices may require adjustable components to encounter
parameter spreading. Setting the resultant y12 exactly to zero - for instance by the lossless
technique from Appendix III-A - is sometimes called unilateralization and distinguished from
a less demanding requirement, where the feedback is reduced sufficiently to guarantee stable
operation. Besides the neutralizing techniques considered in this section, an alternative
approach for reducing feed-back is to use two devices in cascode coupling. With identical
devices - often supplied in a single package for discrete realizations - this method significantly
reduces feedback while keeping the forward transfer data practically unchanged.

Generalization to Z, H, and G Two-port Parameters

Properties like stability and power gain should be independent of the parameter type
chosen to represent the two-port. Four types of small-signal parameters that impose constraints
directly between port voltages and currents are summarized below by Fig.23 to Fig.26 and
Eqs.(89) to (92). The elements in the G matrix should be distinguished from the real part
conductances in the Y matrix. Conversions between the different types are summarized by
Eqs. (95) to (98). While it follows directly from Eqs.(89) to (92) that Y and Z or H and G
are the inverses of each other, conversions between pure admittances or impedances to the
hybrid forms must be deduced separately. Consider as an example the Y to H conversion
where input current i1 must replace input voltage v1 as independent variable. The
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Fig.23 Y-parameter two-port

(89)

Fig.24 Z-parameter two-port

(90)

Fig.25 H-parameter two-port

(91)

Fig.26 G-parameter two-port

(92)

substitution may be visualized by connecting a current generator with impedance ZG as shown
in Fig.27. The flow graph based on y-parameters provides the transformations in the limit of
ZS approaching infinity where the two-port input current i1 equals the generator current IG.
We get

(93)
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where Δy is the determinant of the Y matrix. Similar arrangements apply to the other conver-

Fig.27 Generator setup and signal flow-graph for y-parameter to h-parameter conversions
letting ZG→∞.

(94)

sions. They are all summarized below in Eqs.(95) to (98), where in addition Δz, Δh, and Δg
are the determinants of the Z, H, and G matrices respectively.

(95)

(96)

(97)

(98)
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A driven and loaded two-port characterized by any of these sets may be represented

Fig.28 Two-port between external generator of either Norton or Thevenin type and load.
M may represent Y, Z, H, and G parameters.

by the diagram or flow graph in Fig.28 using one of the substitution rows in Table I. Inserting
y-parameters we get the diagram and flow graph of Fig.5 that was basis for most of the
previous results. To express gain and stability properties we need expressions for input and
output powers to and from the two-port in conjunction with the input and output admittances
or impedances. Using any set of parameters from Table I, the input and output impedances
and/or admittances are derived from the flow graph to yield

The various types of powers become

(99)

It is seen that we get starting expressions for all types of parameters of the same structures

(100)

Fig.29 Augmentation of two-port i H-parameters for stability calculations. If K>1 the setup
will stay stable with all reactances xG and susceptances bL.

than those that were used with y-parameters starting from Eqs.(17) to (21). Therefore, any
other parameter set from the table would develop similarly and provide equivalent expressions.
Thus, most gain and stability quantities are unchanged if all equivalent terms from another
parameter set are substituted. As an example, stability of a two-port in h-parameters
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may be secured by stability estimations on the augmentation in Fig.29 and the stability factor

Table I Substitution scheme for parameters and variables in Fig.28. The term immittance
is used for either impedance or admittance.

Parameter
matrix

Generator Load Two-port variables

drive immittance immittance independent dependent

Wg mG mL u1, u2 w1, w2

Y Ig yG yL v1, v2 i1, i2

Z Vg zG zL i1, i2 v1, v2

H Vg zG yL i1, v2 v1, i2

G Ig yG zL v1, i2 i1, v2

similar to Eq.(46),

The corresponding transducer power gain becomes, cf. Eq.(23),

(101)

The only exception from the rule above concerns maximum unilateral power gain U that was

(102)

introduced by Eq.(10). It was not derived from power considerations involving generator and
load circuits but solely from the power consumption of the two-port. Direct insertion of
parameter translations from Eq.(95) give

where the complex g elements in the last expression should not be confused with the real-part

(103)

(104)

conductances in the Y parameters of the first expression.
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APPENDIX III-A Properties of the Unilateral Power Gain

The appendix gives proofs of the results that are cited regarding the U function,

Fig.30 Lossless encapsulation of a two-port. A lossless, reciprocal four-port Ỹ embeds the
original two-port, Y, to the resultant two-port, Ŷ.

Mason’s unilateral power gain. First it is shown that U is invariant with respect to lossless,
reciprocal encapsulation, second that - as the name suggests - U actually is the power gain of
a two-port in the particular lossless embedding that makes the resultant ŷ12 zero. To prepare
for the first part, the U function is rewritten,

Equivalency of the two forms may be seen by direct insertion of matrix components. It should

(105)

be noted that superscript "t" here stands for matrix transposition without complex conjugation,
while the overline stands for element by element complex conjugation without matrix
transposition.

Fig.30 above shows a two-port in lossless encapsulation. Y-parameters of the original two-port

(106)

(107)

are in the Y matrix while Ŷ holds the y-parameters of the embedded two-port. The task to be
undertaken is to show that

(108)

J.Vidkjær



34 Linear, Active Two-Ports

The connection between the two sets of two-port parameters is the lossless embedding
four-port. The two sets of two-port currents and voltage vectors

are constrained by the admittance matrix of the encapsulation matrix. It is a 4×4 matrix, but

(109)

we organize it in four 2×2 submatrices corresponding to the external and internal two-port
connections. As y-parameters are defined with reference directions into the port-circuits, there
must be a sign shift in the part of the four-port currents that are in common with the original
two-port. The port conditions for the lossless four-port and the original two-port are

The last row in the first matrix equation is used to express the internal voltage pair from v in

(110)

terms of the external voltage pair in v̂, so the internal voltages may be eliminate through the
upper part of the matrix equation, i.e.

Thereby, the encapsulated two-port gets the y-parameter matrix,

(111)

(112)

Losslessness of the encapsulation network is expressed by letting all submatrices be

(113)

purely imaginary. This is emphasized by representing them by real-valued susceptance
matrices, B11 through B22. Furthermore, it is required that the lossless encapsulation network
is reciprocal. This would be the case if the network is build from passive, lossless compo-
nents, i.e. capacitors, inductors or ideal transmission lines. The above conditions are imposed
through

The matrix to be inverted inside the y-parameters from Eq.(113) gets significance

(114)

below. For short we call it W and observe that under the assumptions above, and when it is
operated upon similarly to the numerator and denominator of the original U equation, it
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provides directly

Introducing W through Eq.(113) into the matrices, which are contained in the numerator and

(115)

the denominator determinants of the U function for the encapsulated two-port, gives

The determinants themselves now become

(116)

(117)

Since the leading ratio at the two right hand sides are identical, we have proved Eq.(108),

(118)

which implies that the U function is invariant to lossless, reciprocal encapsulation.

To show that the U function may be interpreted as the maximum power gain of the

Fig.31 First step towards lossless encapsulation to make an unilateral two-port.

two-port in a lossless encapsulation, which makes the combined circuit unilateral, we proceed
by first demonstrating one method of getting zero-valued reverse admittance. The encapsula-
tion is made in two steps. First a susceptance bo is placed in series with the output port. The
resultant y-parameters, Yo, are found either from the flow graph in Fig.31 or directly from
node-equations to yield,

(119)
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The purpose of this step is to turn the resultant yo,12 into a pure susceptance, which may be

Fig.32 Final step in lossless unilateralization

canceled by a subsequent parallel connection of the opposite susceptance jbf as sketched in
Fig.32. The technique is discussed in the section on neutralization on page 27 and implies that
there is a common ground between the ports. The y-parameters after encapsulation by both
jbo and jbf are given by

Enforcing the zero feed-back requirement ŷ12=0 for real and imaginary parts gives the

(120)

requirement on bo and bf to encapsulate for making an unilateral two-port,

With a unilateral two-port where ŷ12=0, the U function becomes

(121)

The last equation is recognized as the maximum power gain from Eq.(85) for a two-port with

(122)

no feedback, i.e. a unilateral one. Recall, that it is not required to find the y-parameters of the
two-port embedded for unilateralization to get U. A y-parameter set derived from the original
two-port in any lossless encapsulation will do, due to the invariance of the U function.
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APPENDIX III-B Conditions for Optimal Power Gain

The appendix details the calculations that led to expressions for the generator and
load admittances yG,opt, yL,opt in Eqs.(34) through (37). The outset is the expression for
operating power gain from Eq.(33) that may be rewritten

Here g2, b2, P, and Q are the auxiliary variables defined by Eqs.(30),(31) but repeated here

(123)

for convenience,

If the susceptance b2 varies, Eq.(123) provides

(124)

(125)

which is the susceptance part of Eq.(35). Conveying this result to the denominator N1 of

(126)

Eq.(123) we get a new denominator called N2, where

The gain is now expressed,

(127)

Differentiating with respect to g2 gives

(128)

(129)

The last equation has the solutions
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where M denotes the square root that was previously given by Eq.(37). The final result is the

(130)

optimal load conductance from Eq.(35). Note that only the solution adding terms is used
because it gives a passive generator admittance gL,opt≥0.

If the optimal conditions apply, the first part of (129) is equivalent to

and the optimal power gain becomes

(131)

This expression is the one shown by Eq.(36).

(132)

To calculate the optimal source admittance we start from Eq.(32) using the N’s from
Eqs.(123), (127), and (131),

Unity of the bracket in the lower line is a consequence of the last optimal condition in (129).

(133)

The corresponding optimal generator susceptance is calculated directly from Eq.(29) through

The last rewriting is based upon the conjugated matching at the output port, y2 = 2g22, which

(134)

is inherent to optimal gain.
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Note that the derivations in this appendix require g11>0, g22>0, conditions that later
on are shown to apply also if the two-port is absolutely stable.
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Problems

P.III-1

Show that the maximum frequency of oscillation for the bipolar transistor in Fig.33

Fig.33 Simple hybrid Π equivalent circuit for bipolar transistor.

is approximated

It is assumed that fmax fT/β, the so-called β cut-off frequency, and that the feed-

(135)

back capacitance is much smaller than the input capacitance. fT is the cut-off frequen-
cy of the transistor.

Numerical example: Rbb=10Ω, Cμ=0.28pF, β=90, and fT=6GHz.

P.III-2

A transistor, which has the equivalent circuit in Fig.34 and components

Fig.34

Fig.35

(136)
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is used in a tuned amplifier, Fig.35. The amplifier must meet the specifications

- Center frequency, 100 MHz
- Synchronous tuning with totally 8 MHz 3dB bandwidth
- Simultaneous matching at input and output ports with RG=50Ω, RL to be found
- Gain as high as possible with K-factor = 5 in augmented estimations including RG
and RL

Resistor Rp is included to meet the above requirements regarding K-factor and
matching conditions.

- Find components C11, C12, L1, Rp, C2, L2, and RL
- Can amplifier stability be guaranteed if RG, or RL, or both are removed ?

- What is the center frequency gain PL/Pin ?

P.III-3

Show that a strictly passive, reciprocal two-port - for instance one made of capacitors,
inductors, and resistors - always is absolutely stable, and therefore always can be
simultaneously matched at both ports.

P.III-4

A FET that has the equivalent circuit in Fig.36 is used in the amplifier of Fig.37.

Fig.36

Fig.37

Capacitors C1 and C2 are adjusted to make the input and output tuning circuits equal
when the transistor capacitances are taken into account,
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Taken separately, for instance by short-circuiting the opposite port, the input and
output resonance circuits are tuned to center frequency fo=300 MHz.

- Find the greatest value Rp=Rpmax where the amplifiers stays stable and find the
frequency of oscillation, if this values is slightly exceeded.

- Choose Rp to give a stability factor K = 5 for the complete setup. Calculate the
center frequency magnitude and the 3 dB bandwidth of the corresponding trans-
impedance, z=|v2/IG|.

P.III-5

Find expressions for the neutralizing components Rn and Cn in a bipolar transistor

Fig.38 Neutralization of bipolar transistor with significant base
series resistance.

where the base series resistance is taken into account as shown in Fig.38.

Numerical example:

Rbb=50Ω, β=100, Cμ=2pF, fT=1.5 GHz, n=0.5, DC current, IC=10 mA.
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