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II RF-Circuits, Concepts and Methods

In RF-communication system, control of frequency bands and impedance matching
conditions between functional blocks or amplifier stages are problems that constantly face a
circuit designer. The tasks are so frequent that many analytical techniques and approximation
methods especially suited for high-frequency circuits have evolved and strongly influenced the
jargon of RF engineering. Below we shall introduce the most important basic concepts and
methods that are required to

- understand data sheets and literature,

- make simpler design decisions or calculations, and

- prepare and interpret simulation data.

The selection of topics and examples have furthermore been conducted to suit the needs in
the following chapters, which are still in preparation.

Scanning contents, the chapter starts summarizing basic properties of resonance
circuits. Although significant by themselves, the importance of acquiring familiarity with ideal
resonance circuits is the fact, that any narrowbanded resonance circuit may be approximated
by the ideal ones around resonance frequencies. This property reduces significantly the efforts
that are required to understand and explore operations of tuned bandpass circuits, which are
frequently used in RF-communication systems. Foundations of the simplifications are dealt
with in sections concerning narrowband approximations and series-to-parallel transformations.
The tuned amplifiers are introduced in ideal form concentrating on simple frequency charac-
teristics. Coupling techniques using transformers and coupled resonance circuits are still highly
useful methods in RF-designs, so they are considered in some details here. Finally, the very
general method of constructing lumped element matching networks using a Smith chart is
exemplified.

Power matching is fundamental for designing and understanding many RF circuits.
Although this concept is mandatory in basic circuit theory curriculums, it is repeated for
convenience in an appendix. Also the method of illustrating and solving network equations
by the signal flow graph method is summarized in an appendix.
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2

II-1 Parallel Resonance Circuits

Fig.1 Parallel resonance circuit

(1)

A basic parallel resonance circuit is shown in Fig.1. Besides component values the
combinations, which are summarized by Eq.(1), are frequently used. The resonance frequency
is the frequency where the capacitive and the inductive susceptances are equal in magnitude
as indicated in Fig.2a. When an external steady state sinusoidal voltage-source of frequency
ω0 is applied to the resonance circuit, the two opposite currents through the capacitor and the
inductor balance each other, and only the resistor current flows through the terminal. This
situation is sketched in Fig.2b, which also shows how the quality factor Q indicates the
magnitude ratio of the internal reactive currents over the resistive terminal current at reso-
nance.

Fig.2 Parallel resonance. (a) Susceptance composition as function of frequency. (b)
Current and voltage phasors at the resonance frequency ω0.

Another view upon resonance and the quality factor concerns the energy in the circuit
under steady state conditions. At instants where the two phasors iC and iL are perpendicular
to the real axis, no currents flow into the capacitor or inductor, but the capacitor hold
maximum energy

(2)
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3II-1 Parallel Resonance Circuits

The first equation is the usual electrostatic energy expression. The second takes into account
that rms values - indicated by small letters - are conventionally used when dealing with steady
state linear circuits. A quarter of a period later the current phasors project in full onto the real
axis while the voltage is zero. The capacitor holds no energy, but the inductor energy peaks
with the same maximum that formerly was held in the capacitor,

Thus, a constant amount of energy laps between the capacitor and the inductor at resonance,

(3)

and the quality factor may be expressed

where the loss is calculated as the resistor power times the resonance period T0=2π/ω0. This

(4)

interpretation of resonance is often useful in the construction of lumped circuit equivalents for
the variety of electromagnetic and mechanical resonators that are used in RF-circuits.

Frequency Response

Expressed through circuit element values, the impedance function for the parallel
circuit in Fig.1 is

Introducing ω0 and Q from Eq.(1), the impedance expressed as a function of frequency s=jω

(5)

becomes

The frequency dependency of the impedance is kept in the quantity β(ω), which is zero at the

(6)

resonance frequency ω0. Here the denominator of Eq.(6) gets its smallest size and the
impedance has maximum Rp, the parallel resistance. The magnitude and phase of Zp(jω) are

The two functions are shown in Fig.3(a) while Fig.3(b) shows the corresponding admittance

(7)

characteristics,
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4 RF-Circuits, Concepts and Methods

Upper and lower bounds of the 3dB bandwidth intervals W3dB, which are indicated

Fig.3 Impedance (a) and admittance (b) magnitudes and phases of the parallel resonance
circuit in Fig.1. The curves are symmetric around ωo due to the logarithmic fre-
quency scales.

(8)

in Fig.3 , correspond to a denominator size equal to 2 in Eq.(7). The bounds are found
setting the imaginary part of the denominator equal in magnitude to the real part, i.e.

Both negative and positive frequencies are contained in the conditions. We call the largest

(9)

valued solutions, where the two terms in ωb have equal signs, the upper bounds ±ωbu. The
lower bounds ±ωbl are obtained with terms of opposite signs. Fig.4 summarizes how the
different solutions are formed. By definition, the 3dB bandwidth is taken to be the distance
between positive or zero-valued 3dB frequency bounds, and we get the result that was
incorporated in Fig.3,

It follows from the solutions in Eq.(9) that the resonance frequency ω0 is not centered between

(10)

the 3dB bounds but is the geometrical mean of the bounds,
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5II-1 Parallel Resonance Circuits

Fig.4 Upper and lower 3dB bound positions from Eq.(9) . Note, in linear frequency scale
the 3dB bands are not symmetric around the resonances at ±ω0 unless Q → ∞.

(11)

so in logarithmic frequency scale the upper and lower 3dB frequency bounds are symmetric

(12)

with respect to logω0. However, any other pair of frequencies, ωu,ωl that has the resonance
frequency as geometrical mean maps symmetrically around logω0. Since both frequencies
provide the same absolute |β|, i.e.

the impedance or admittance magnitude characteristics of the types in Fig.3 have even

(13)

symmetry with respect to the resonance frequency in a logarithmic frequency scale. Corre-
spondingly, the phase characteristics show odd symmetry because tan-1(-Qβ)=-tan-1(Qβ). At
the 3dB boundaries where |Qβ|=1, the phase angles of impedance Zp become ±¼π. Fig.5
shows plots of the impedance function with various Q-factors. The normalization in magnitude
corresponds to keeping the inductor and capacitor fixed while letting the parallel resistance
follows Q according to Eq.(1). The asymptotic behavior of the impedance approximating the
inductor reactance below and the capacitor reactance above resonance respectively are readily
observed. Calculating magnitudes, it may suffice to use the inductor or capacitor alone at
frequencies that differ more than a factor of three from resonance.

Summarizing the frequency characteristics, we have seen that the greater Q, the
smaller bandwidth and in turn, the steeper phase characteristics around the resonance frequen-
cy ω0. Moreover, the frequency characteristics were symmetric in logarithmic frequency scale.
Phase steepness is an important property when a resonance circuit is employed in an oscillator
and we shall return to this question later. Also, the symmetry property will be reconsidered.
Important classes of signal handling expect linear symmetry that may be approached with high
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6 RF-Circuits, Concepts and Methods

Q circuits too.1 For obvious reasons such circuits are also called narrowbanded.

Fig.5 Normalized magnitudes and phases in the impedance of parallel tuned circuits with
varying Q-factors.

Poles and Zeros

Pole and zero positions are useful for investigating responses of frequency selective
networks that include parallel tuned circuits. Using parameters from Eq.(1), the impedance Zp
of Eq.(5) is rewritten,

Solving for the s-values, which set the numerator and the denominator equal to zero respec-

(14)

tively, gives the zero and the poles of the impedance function. Once poles and zeros are
known, the impedance may be cast in the form that suits the analysis of composite networks,

(15)

1 ) See section VI-1 on frequency stability in oscillators and section I-4 on transmission
of narrowband signals.
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7II-1 Parallel Resonance Circuits

While there is a tradition of using Q for characterizing frequency responses of
resonant RF circuits, the conceptually equivalent damping ratio ζ is often seen in pole-zero
and especially transient response calculations, where it leads to more compact expressions. We
proceed here with both forms and get,

Up to this point no attention was given to actual parameter values. The last result requires a

(16)

distinction between circuits having ζ≥1 and ζ<1 ( Q≤½ and Q>½ ). In first case the square
roots of Eq.(16) are real and the poles are on the real axis. In second case the poles move
from the real axis and make a complex conjugated pair. To emphasize this property we change
the last part of Eq.(16) to read

The square roots in (a) are real valued if the poles are complex. The approximations in the

(17)

Fig.6 Position of poles s1, s2, and the zero s0 in the impedance
Zp(s) of the parallel resonance circuit with ζ<1 or Q>½.

following lines apply to lightly damped circuits with higher and higher Q´s, where the
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8 RF-Circuits, Concepts and Methods

expressions in Eq.(17)(b) are based on the estimate

Fig.6 sketches the geometry of complex pole and zero positions. Starting from damping ζ=1

(18)

( Q=½) the poles are by Eq.(17)(a) constrained to move along a circle of radius ω0 from the
real towards the imaginary axis with declining damping or growing Q. Once the poles and
zeros are known, the frequency characteristics of Zp may be calculated from geometrical
considerations as sketched in Fig.7 and Eqs.(19) to (21).

Fig.7 Calculation of Zp(ω) from poles
and zeros

(19)

(20)

(21)

Transient Response

The projection of the poles on the imaginary axis determines the oscillatory modes

Fig.8 Charging of capacitor C to voltage VC0 = QC0/C.

in the transient responses of the circuit. To see this, we consider the decay of circuit energy
when the circuit is left alone once the capacitor has been charged to a voltage of VC0 with the
inductor current initialized to zero. The initial charging of the capacitor is equivalent to
forcing a pulse current of strength

(22)
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9II-1 Parallel Resonance Circuits

through the circuit as indicated by Fig.8.2 The corresponding transient voltage decay Vdcy(t)
is the impulse response of the impedance function, which is given by its inverse Laplace
transform, i.e.

The last rewriting prepares for use of standard Laplace transform tables, from which we get

(23)

where the angular frequency is recognized as the size of the imaginary pole component if ζ<1.

(24)

Introducing the auxiliary phases and the identities

the time domain responses may be condensed to read

(25)

(26)

(27)

(28)

2 ) Note, the delta function δ(t) has dimension [sec-1] to comply with the requirement
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10 RF-Circuits, Concepts and Methods

Fig.9 shows examples of the responses with different dampings. The case ζ=1, where the two

Fig.9 Transients from Eq.(28). Examples in (a) are heavily damped and (b) is lightly
damped. Time scales are in units of the resonance period T0=2π/ω0.

poles coincide on the real axis, sets the border between aperiodic and oscillatory solutions. In
the latter case, the leading exponential factor shapes the envelope to the solution

The corresponding time constant,

(29)

(30)

is sometimes called the logarithmic decrement of the circuit. Observe that the result is in
agreement with the previous equivalent baseband considerations in example I-4-2. In practical
terms we notice that the significant number of cycles through the decay approximates Q if Q
>≈ 5 so ζ≈< 0.1 and cosφ1≈1. It follows from the fact that at t=QT0, the exponential has fallen
from one to

so more than 99.8% of the initial energy is lost in the resistor at that instant.

(31)
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II-2 Series Resonance Circuit Summary

Fig.10 Series resonance circuit

(32)

A series resonance circuit is connected as shown by Fig.10 and Eq.(32) summarizes
its common parameter combinations. The circuit admittance and impedance are,

Compared to the parallel circuit impedance and admittance in Eq.(5) it is seen, that the

(33)

numerator and denominator are similar in structure with respect to s, but the coefficients are
different. Connected to a source, the two types of resonance circuits behave in duality. This
means that the reader could kindly be asked to repeat the preceding section exchanging terms,
voltage and current, parallel and series, impedance and admittance, inductance and capaci-
tance, resistance and conductance, and then we were done. To avoid confusion in future
references, however, the main concept of the series resonance is summarized below in its own
terms, but without detailed derivations.

At resonance in a series circuit the voltages across the inductive and the capacitive

Fig.11 Series resonance. (a) Reactance composition as function of frequency. (b) Voltage
and current phasors at the resonance frequency ω0.

reactances are equal in magnitudes but opposed in phases. With the same current flowing
through all components the requirement is that the two reactances balance each other at the

J.Vidkjær



12 RF-Circuits, Concepts and Methods

resonance frequency as indicated by Fig.11(a). The phasor diagram in Fig.11(b) shows that
the quality factor now represents the ratio of the reactance voltage magnitudes over the voltage
vR across the series resistor Rs. At resonance this voltage equals the terminal voltage v. With
one terminal grounded, the potential at the interconnection between the inductor and the
capacitor becomes Q times as high as the potential at the driving terminal. This fact may
significantly influence the practical realization of high Q series circuits.

Like the parallel circuit in steady state resonance, a constant amount of energy is
exchanged between the capacitor and the inductor in the series circuit. In terms of energy
there are no differences between the two types of resonance circuits regarding the quality
factor, but the loss calculation must now be detailed as a series loss,

Using the resonance frequency and the quality factor from Eq.(32) the impedance of

(34)

the series circuit is expressed

The frequency is again accounted for through β(ω), so the impedance and admittance func-

(35)

tions become symmetric in logarithmic frequency scales as showed in Fig.12.

Impedance and admittance magnitudes and phases in Fig.12(a) and (b) are given by

Fig.12 Impedance (a) and admittance (b) magnitudes and phases of the series resonance
circuit in Fig.10. The curves are symmetric around ωo due to the logarithmic fre-
quency scales.

J.Vidkjær



13II-2 Series Resonance Circuit Summary

The equations are equivalent to Eqs.(8) and (7), so all results concerning bandwidth and

Fig.13 Normalized magnitude and phases for the impedance of series resonance circuits
with varying Q-factors.

(36)

(37)

symmetry of bounds and characteristics may directly be overtaken from the forgoing section.
Fig.13 holds impedance characteristics with different Q-factors and shows the asymptotes set
by the capacitor and inductor below and above resonance respectively.

Poles and zeros for the series circuits are based on the expressions

Comparison to Eq.(14) reveals that the zeros of Zs(s) must follow the pattern of the poles in

(38)

the parallel circuit while the pole of Zs in origo corresponds to the zero of Zp there. In terms
of poles and zeros, the series circuit impedance is

where the geometrical properties of s0, s1, and s2 are the same as in Fig.6.

(39)

J.Vidkjær
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II-3 Narrowband Approximations

Frequency dependency of the impedance in the parallel resonance circuits was
expressed through the nonlinear function β(ω). In consequence, we had to solve 2nd order
equations to find prescribed bandlimits. If the circuit is narrowbanded, a linear approximation
to the frequency relationship may suffice for design considerations around the resonance
frequency. A Taylor expansion provides

Following Eq.(9), the 3dB bounds are the frequencies where |Qβ(ω)|=1. With the approxima-

(40)

(41)

tion, bandlimits are placed symmetrically around ω0, and the 3dB bandwidth becomes

The same result was obtained in Eq.(10) from the nonlinear β(ω) expression, so the linear

(42)

Fig.14 Comparison of true and approximate 3dB bandlimit and bandwidth calculation in
simple resonance circuits. The expression for the true middle frequency ωm is taken
from Fig.4.

approximation gives the right bandwidth. However, Fig.14 reveals that the approximation
places the 3dB interval below the correct one. But it is also seen in the figure that the greater
Q, the smaller spacing between the 1/Q and -1/Q lines, and the smaller is the error introduced
by approximating to symmetrical 3dB bounds through Eq.(41). To quantify this point

J.Vidkjær



15II-3 Narrowband Approximations

we calculate the relative difference between the approximated and the true value of the
bandlimits. They are equal to the relative difference between the corresponding middle
frequencies. It is ω0 in the linearization while the true middle frequency ωm depends on Q as
indicated by Fig.4. The relative error becomes

The figures show that the accuracy of the approximation is admirable for most applications

(43)

in circuits where Q is five or more. With Q exceeding one the accuracy may even suffice for
initial design estimations.

Inserting the linear expansion of β, the impedance of the parallel resonance imped-

Fig.15 Impedance of parallel RC circuit.

ance circuit is approximated

In terms of frequency deviation from resonance, ω-ω0, the expression is as simple as a first

(44)

order lowpass characteristic, for instance the impedance of a resistor and a capacitor in parallel
as sketched in Fig.15. Thus, instead of the resonance curves in Fig.3 or Fig.5, we may take

the impedance from a normalized first order lowpass characteristics like the one given in
Fig.16. Note, however, that compared to the lowpass case of Fig.15, the frequency deviation
in the last denominator of Eq.(44) is normalized with respect to half the 3dB bandwidth,
because there are 3dB limits on either side of ω0. The lower frequency bound in lowpass is
fixed to zero and not found from an expression. A standardized characteristic as the one in
Fig.16 has several interpretations, including

(45)
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16 RF-Circuits, Concepts and Methods

It must still be kept in mind that the narrowband approximation is useful around ω0, but gives

Fig.16 Normalized first order lowpass characteristics. The sign of Ω must precede the
phase in bandpass interpretations, either complete or narrowband approximated.

wrong results far from this region. For instance, the true and the approximated bandpass
expressions in Eq.(45) are seen to give different results using ω = 0 or ω → ∞.

Another approach to narrowband approximations takes an outset in the pole and zero

Fig.17 Contributions from poles s1, s2 and zero s0 to Zp in narrowband approximation
where (b) is an expanded view of the encircled region in (a).

constellation. With high Q-values, the poles are close to the imaginary frequency axis. If we
limit our scope of investigation to the region around the upper pole, for instance the encircled
region in Fig.17, the distances to the other pole s2 and the zero s0 are long. As indicated by
the figure, their contributions to the impedance are taken constant, 2jω0 and jω0 respectively,
so the impedance becomes,

(46)
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17II-3 Narrowband Approximations

Using the pole position estimates from Eq.(17)(c) and inserting the Q -factor from Eq.(1), the
approximation along the imaginary axis s=jω it calculated to yield

As seen, this is the same impedance approximation that was obtained in Eq.(44) on basis of

(47)

the Taylor expansion of β(ω). So it is concordant to approximate the impedance function by
the last parts Eq.(46) in s-plane calculations or by Eq.(44) along the jω axis.

Simplifications by the narrowband approximations for resonance circuits are beneficial
in many computations. Before leaving the subject we shall, however, expand the scope beyond
resonance circuits. The frequency dependency of a network is determined through the
reactances of capacitors and inductors. Suppose we know a network and its corresponding
frequency response H(s). This response may be transformed to another frequency range by
mapping frequencies while preserving individual reactances everywhere in the circuit, a
technique that is fundamental to filter design [1],[2],[3]. One such mapping - the only
one we consider - is the lowpass to bandpass transformation given by

Here subscripts "lp" and "bp" are introduced to distinguish between lowpass and bandpass

(48)

frequency planes. Along the imaginary axes where slp=jωlp and sbp=jωbp, the transformation
agrees with the lowpass and bandpass relations in (45). Applying the transformation directly
to circuit components maps inductors and capacitors in lowpass networks to series and parallel
resonance circuits in bandpass, where we get

(49)

Fig.18 Lowpass-to-bandpass trans-
formation of inductors and
capacitors.

(50)
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18 RF-Circuits, Concepts and Methods

If the lowpass response of a network is known in form of a transfer or immitance3 function
H(s)=H(slp), the corresponding bandpass expressions, which accounts for the components
mappings, is the one obtained replacing slp by sbp. If the lowpass response is characterized by
poles, zeros, or other characteristic complex frequencies, we must solve for sbp in terms of slp
to get the corresponding bandpass properties, i.e.

A major reason to consider the lowpass to bandpass transformation is the fact that

(51)

many common, renowned frequency characteristics4 are described as lowpass prototypes. To
use them in bandpass circuits, we must use the lowpass to bandpass transformation. If the
transformation is based on pole-zero patterns, Eq.(51) must be employed. A center frequency
in bandpass, which is large compared to the bandwidth in translation, imply the simplified
solution

If the approximation applies, we have narrowband conditions. Here, a lowpass pole-zero

(52)

pattern around origo described by positions slp in the lowpass s-plane transforms to bandpass
by copying two linearly scaled versions of the patterns, one centering at jω0 and one at -jω0.
This is clearly much simpler than solving for the correct poles and zeros through Eq.(51).
Example II-5-2 in the next section discusses the question further. Like other narrowband
considerations the simplifications remain valid with poles and zeros close to the lowpass origin
or the bandpass centers. Far apart the true solution must still be employed, in particular with
respect to the zeros at infinity that are inherent properties of the lowpass characteristic. Zeros
at infinity means that the power of slp in the transfer function denominator is higher than the
power in the numerator. By Eq.(51) the lowpass plane point of infinity maps to two zeros in
bandpass, one at infinity and one in origo. The latter are not encompassed by the narrowband
approximation. It must be separately accounted for if the approximation method is used to
realize bandpass circuits.

3 ) Immitance is a collective name for impedance and admittance.

4 ) Names like Butterworth, Chebyshev, Legendre, and Cauer or features like elliptic or
equal-ripple are examples.
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II-4 Series-to-Parallel Conversions

Many practical situations include resonant circuits that are not ideal parallel or series
circuits. Clearly, it is always possible to elaborate impedance or transfer function expressions
in full details for the particular circuits in question. At single frequencies or under narrow-
band conditions, however, a technique known as series-to-parallel conversion may greatly
simplify the efforts to get useful results while keeping major insight on the circuit perfor-
mance. Due to the frequent - but often tacit - use of the method in technical literature and data
sheets, its foundation is presented here in some details.

Fig.19 and Fig.20 show a series connection and a parallel connection of a resistance
and a reactance. The resultant impedances and admittances are given in Eqs.(53),(54) and
(55),(56) respectively.

Fig.19

(53)

(54)

Fig.20

(55)

(56)

Forcing agreement between the two admittances gives the series-to-parallel conversions, i.e.
resistance and reactance conditions by which the parallel connection in Fig.20 may replace the
series connection in Fig.19.

Similarly, equating impedances gives the parallel-to-series conversions,

(57)
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20 RF-Circuits, Concepts and Methods

If reactance is the dominating contribution to the impedance in consideration, that is either Rs

(58)

|Xs| in series or Rp |Xp| in parallel connections, the two types of conversion simplify to
the approximations

The last expressions are the ones most commonly associated with the concept of parallel-to-

(59)

series conversion. In this form they are particularly easy to memorize due to the symmetry of
converting back and forth between series and parallel representations. The following example
illustrates the technique of using the series-to-parallel method directly in design.

Example II-4-1 ( impedance matching )

A power transistor of known input impedance should match a 50Ω generator at 470 MHz

Fig.21

using the circuit in Fig.21, where biasing components are left out. Inductor L is fixed and C1,
C2 are trimmer capacitors. Find the trimmer settings and estimate the half power bandwidth
of transfer to the transistor.

To solve the problem we consider the equivalent circuit in Fig.22. A basic requirement for

Fig.22

matching is Rp = Rg, so the mapping of Rin to parallel form through the combined series
reactance Xs must equal Rg. When the required Xs is found, capacitor C1 is adjusted to tune
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out the corresponding parallel reactance Xp by setting X1=-Xp. Using terms from the figure
and the simplified conversions from Eq.(59), where Xp=Xs , we get

The value of Xs in Eq.(60) may seem marginal with respect to the prerequisites of the

(60)

(61)

(62)

(63)

simplified method. Without any assumptions about sizes of impedances, Eqs.(57),(58) provide
correspondingly

As seen only small changes follow from the more elaborate but correct conversions. To

(64)

(65)

(66)

estimate the bandwidth for power transfer, we consider the network as a parallel resonance
circuit and divide it into a capacitive and an inductive side as sketched in Fig.23. At the center
frequency the whole available power from the generator is transferred to the transistor since
there are no resistive losses in between. Therefore, the network determined above implies
conjugated matching across the cut. The parallel resistance Rpp, obtained by converting Rin
to parallel form through inductances only, must be equal to the parallel resistance, which
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originates from Rg and converts through the capacitive side. In a parallel resonance circuit the

Fig.23

Q-factor is the ratio of the total parallel resistance, here ½Rpp, over either the inductive or the
capacitive reactances. Continuing the simplified approach from Eqs.(60) to (63), which here
implies Xpp = XL +Xin, we get

Due to losslessness, the absolute level of the voltage transfer function at the center frequency

(67)

is most easily calculated letting Rin consume the available power, i.e.

This quantity wasn’t actually asked for, but now it possible to compare our results with

(68)

Fig.24

simulations as it is done in Fig.24. The fully drawn curve is calculated using capacitances
from the simplified method from Eqs.(62),(63) while the dotted curve is based on Eqs.(65),
(66). The observable consequence of the simplified method is a slight displacement of the
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center frequency where matching is obtained. However, the differences in capacitance values
between the two situations are easily compensated with trimmer capacitors.

One final point should be observed concerning the bandwidth estimation. The transistor
impedance to be matched was taken from data-sheets, and the positive reactance part was
treated by Eq.(66) like an inductor for bandwidth estimations. Here it is a tacit assumption that
the input reactance does not change faster than an inductor across our frequency band, i.e.
without sensible resonances from the transistor or its mounts. If this occurs, we have no means
for estimating bandwidth, but the center frequency matching procedure remains valid, if the
transistor data are reliable.

Example II-4-1 end

Conversions in Narrowband Applications

Reactances of inductors and capacitors depend on frequency so - strictly speaking -

Fig.25 Conversion of a small inductor series resistance RLs to a parallel resistance RLp .
Circuit (b) is a narrowband approximation to (a) around resonance frequency ω0.

a series-parallel conversion applies to a single frequency. However, we could estimate the
bandwidth of the resultant circuit in the example above, a consequence of the fact that in
narrowband circuits, component values obtained by series-parallel conversions at the center
frequency are useable throughout the passband. To see this from an analytical point of view
we consider the example in Fig.25. Inductor L is employed in a parallel resonance circuit, but
it has a small series resistance RLs, so the resonance circuit is no longer ideal. To deal with
this circuit easily, RLs is converted to the parallel resistance RLp and parallel resonance
methods are used on the circuit in Fig.25(b). It is supposed that the series resistance is much
smaller than the reactance Xs = Lω0, so the simplified relations from Eq.(68) are used
including the fact, that the inductor reactance remains unaffected of the conversion. Therefore,
resonance frequency ω0 is figured out the usual way and the corresponding Q-factor and band-
width follows from the sequence,

(69)
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Notice that the contributions from the two resistors to the resultant Q-factor are distinguishable
through a "parallelling" relationship

It is not self-evident that the circuit in Fig.25(b) with frequency independent RLp may

(70)

(71)

substitute the original circuit across a passband. To convince, the two impedance functions
must be compared. The ideal parallel circuit is given by Eq.(14),

Casting the impedance of the original circuit in Fig.25(a) into a comparable form we get

(72)

Identification of Q-factor through the first order denominator term gives

(73)

which agrees with the subdivision of Qtot in Eq.(71), provided that the resonance frequencies

(74)

ωm0 and ω0 are equal. But this is not so unless the resistors meet the condition

Implicitly the inequalities express a narrowband assumption. The result of a parallel connec-

(75)

tion cannot exceed any of its components. If Qm=Qtot 1 we must therefore require
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Under narrowband conditions the two circuits in Fig.25 will have the same poles because the

(76)

impedance functions get the same denominators. Regarding numerators Eq.(74) shows that
Zm(s) has a zero on the negative real axis compared to the zero in origo for Zp(s). Therefore,
the impedance Zm reduces correctly to the parallel combination RLs Rxl at dc while the
inductor short-circuits in the narrowband approximation.

Observe, however, that the difference in zeros between Zm and Zp is an asymptotic deviation

(77)

outside the scope of the narrowband assumption. If the response is dominated by poles, which
is the case in the passband, the parallel circuit obtained by series-to-parallel conversion at ω0
is usable to the same degree of confidence that accompanied other types of narrowband
approximations.

Parallelling of Q-factor contributions has wider implication than just being a vehicle
in the previous discussion. Imperfections in reactive components that cause loss of power may
be specified in data sheets or measurements by associating a quality factor directly to the
component. In agreement with Eq.(71), the Q-factor is either the ratio of the reactance over
a series loss resistance or the ratio of a parallel loss resistance over the reactance. With higher
Q´s, say three or more, it makes no difference for narrowband computations whether the
physical loss originates in series, parallel, or combined connection, we convert to the form
most suited for the problem at hand through the approximate conversion from Eq.(59),

(78)

The combination of Q-factors is sometimes expressed in a terminology of loaded, unloaded,
and external Q´s, which follows the paralleling expression, cf.[4] sec.7.1,

(79)

Subscript "unloaded" refers to unavoidable loss components in the reactances that make the
resonator and "external" to all other resistors. The resultant "loaded" Q determines the
bandwidth around resonance and is always smaller than any component Q-factor. In this
terminology the example from Fig.25 and Eq.(71) should read

(80)
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Conversions in Broadband Modeling

In narrowband applications of reactive components it suffices to specify its reactance
and Q-factor as a function of frequency. Then we may use Eq.(78) and the series-parallel
conversion around the center frequency to make design calculations. On the contrary charac-
terization of reactive components for broadband application, including modelling by frequency
independent circuit elements, requires detailed equivalent circuits. To find the models we may
still benefit from the series-parallel relationships. The following example illustrates this aspect.

Example II-4-2 ( spiral inductor )

Data from an inductor in a GaAs microwave integrated circuit are shown in Fig.26.

Fig.26 Spiral inductor forward y-parameters. Reverse y12 and y22 are similar. Data are
converted from s-parameter measurements. g21´s are uncertain at high frequencies.

The layout is a planar spiral of the type in Fig.27 and the measurements are made with the
inductor connecting an input and an output port. Due to small dimensions, thin metal and
isolation layers, the inductor is far from being ideal. We wish to find an equivalent circuit
based on the measurements. Like other integrated passive component a Π-structured model
is expected, so it is natural to translate the experiments to y-parameters. The definitions in
forward measurements take form of input and transfer admittances with shorted output as
summarized by Fig.28.

Fig.27 Spiral inductor layout example. Fig.28 Definition of y-parameters y11, y21.
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Fairly below 10 GHz the data show nearly ideal asymptotic behavior, where imaginary and

Fig.29 Spiral inductor equivalent circuit where (a) suffices below the resonances that are
included by (b). The shorts at the outputs are required to interpret y-parameters.

real parts are inversely proportional to frequency or squared frequency respectively. The latter
indicates that the dominant inductor loss is a series loss. To see this we convert the simple
equivalent circuit in Fig.29(a) to y-parameter parallel form through

The real conductance component shows the observed second order relationship. Extrapolating

(81)

the declining asymptotes to the frame of the figures at 31.62 GHz gives

The series resistance is high and troubles many designs using integrated spiral inductors. At

(82)

5GHz, for instance, the experimental data ( dots in Fig.26 ) are close to the maximum Q-
factor, which develops

Above 10 GHz the data indicate resonances in both y-parameters. The susceptances of the

(83)

inductance are here canceled by stray capacitors, at f01=11.52 GHz in y11 and at f02=18.16
GHz in y21. To include resonances the model is enhanced to Fig.29(b), which now gives

(84)
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A final look at the measurements shows a distinct asymptote in the real part of y11 above

(85)

(86)

Fig.30 Complete y11 model and the elements that are sensed above resonance.

resonance f01. The asymptote increases in proportion to the squared frequency, which might
be the effect of a small resistance in series with a capacitor. It is therefore tempting to make

one more step in the modeling. Considering y21, the real parts of the experimental data are
too noisy and uncertain for further identifications, and we concentrate on y11 as shown in
Fig.30. Now the asymptote for g11 at the frame of the data implies

(87)

Fig.31 Complete equivalent for the spiral inductor measurements.

Including the last extension, the equivalent circuit for the spiral inductor takes the shape of
Fig.31. The y-parameters, which this model accounts for, are shown in Fig.32. The only
observable discrepancies to the measurements are in g21 above resonance, where the experi-
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mental data are badly conditioned. In view of literature on GaAs IC design, for instance
[5], the model we have constructed from nothing but basic knowledge on series-parallel
transformations and resonance circuits is rather complete.

Fig.32 Simulated verification of the complete spiral inductor equivalent circuit from Fig.31.
The corresponding experimental data were shown in Fig.26.

Example II-4-2 end
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II-5 Tuned Amplifiers

Resonance circuits are used to shape the frequency response of frequency selective

Fig.33 Functional and simplified equivalent circuit of a single-tuned amplifier.

amplifiers. Fig.33. shows an example where a bipolar junction transistor is loaded by a parallel
resonance circuit. A simple transistor equivalent circuit is employed to keep the amplification
function uncomplicated. Using Eq.(45) the voltage gain v2/v1 is expressed

The transistor output capacitance and conductance add to the external tuning circuit compo-

(88)

nents to give center frequency amplification A0 and bandwidth,

Note, the input resistance and capacitance in the transistor model have no direct effects on

(89)

these expressions, but play the role of loads if more stages are cascaded. The frequency
response, which shapes like the parallel circuit impedance function Ztot(jω), may be calculated
either fully correct or narrowband approximated by the frequency expressions

Recall from the discussion on the narrowband approximation in section II-3 that the two forms

(90)

differ with respect to bandlimits but not bandwidths.

To compare frequency selective amplifiers, two figures of merits are the gain-band-
width product and the gain-bandwidth factor. The product is defined as the center frequency
voltage gain times the 3dB bandwidth,

(91)

J.Vidkjær



31II-5 Tuned Amplifiers

With more stages the GW-product commonly refers to an average gain per stage, i.e. 5

where N is the number of tuned stages. The single stage amplifier above has

(92)

This product is used as a reference for the gain-bandwidth factor, GBF, which is defined by

(93)

It is supposed, that the transconductance and the total loading capacitance are the same in both

(94)

numerator and denominator. Transconductance gm is a property of the transistor. In the lower
limit Ctot holds the transistor output capacitance and other unavoidable contributions from
mounts and loads. Therefore, GW is often used as a goal for optimizing or comparing
transistor and IC performances. The normalized GBF is suited for comparing amplifier
structures without detailed regards to the devices that give the gain.

There exists a series of fundamental theorems concerning GBF’s of interstage
connections between amplifier stages, first introduced by Bode [6]. Their derivations and
detailed interpretations are beyond the present scope and needs. Briefly, when one amplifier
stage is connected to the next, it is stated that GBF cannot exceed two with a passive one-port
paralleled across the connection. A passive two-port interstage coupling has a theoretical maxi-
mum of four. Networks representing the maxima are complicated and of little practical use
with the high gain RF transistors of today. However, it is still informative to use GBF in
comparisons between different amplifier structures even when they fall considerably below
the theoretical limits.

An amplifier stage holding only one resonance circuit is called a single-tuned
amplifier. With more resonance circuits separated by transistors there are many possibilities
on how to organize their center frequencies and Q-factors. The simplest case is that all tuning
circuits have identical resonance properties. This well-defined situation is called synchronous
tuning, as opposed to a more diversified group of so-called stagger tuned amplifiers.

5 ) There are many competing definitions and notations around. Bandwidth in units of
radians per second is denoted GW here, while GBW is used if bandwidths are in
units of Hz. The term MGBW - "M" for mean - may be seen instead of GWav.
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Synchronously Tuned Amplifiers

Cascading N equally tuned amplifier stages of the type from Fig.33 gives a voltage
amplification of form,

The center frequency amplification AN0 at Ω = 0 is the product of the center frequency

(95)

amplifications in each stage. In normalized frequency a single stage amplifier has 3dB
bandlimits corresponding to Ω=±1. With N equally tuned stages we must solve for the Ω’s
that reduces the absolute amplification by a factor of 2, that is

Without normalization with respect to frequency, the result gives the bandwidth of N stages

(96)

Fig.34 Normalized amplitude and phase characteristics in synchronous tuning. Gain-band-
width factors GBF2, GBF3 give the bandwidth reductions for 2 and 3 stages.

in terms of one stage through

where the gain-bandwidth factor GBFN in this particular application also is called the

(97)

bandwidth reduction or bandwidth shrinkage factor. Examples of the reduction process are
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seen in the characteristics of Fig.34. The amplitude of N equally tuned stages rolls off
approaching an asymptote of -N×20dB/decade. The stronger the bending of the corresponding
curve, the smaller becomes the bandwidth. Since 21/N → 1 with growing N , the reduction
factor may be approximated from the following estimations,

True and estimated bandwidth reductions are compared below in Table I. Whenever more

(98)

stages are cascaded, the approximation gives reasonable results.

Table I True and approximated Gain-Bandwidth Factors ( Bandwidth Reduction Factors
) for N Synchronously tuned amplifier stages.

N GBFN ∼ GBFN N GBFN ∼ GBFN
2 0.6436 0.5893 5 0.3856 0.3727

3 0.5098 0.4811 6 0.3499 0.3407

4 0.4350 0.4167 7 0.3226 0.3150

Example II-5-1 ( synchronous tuning )

The amplifier in Fig.35(a) should operate with Rg=RL=75Ω having a total bandwidth in

Fig.35 Amplifier principle, (a), and transistor equivalent circuit, (b).

synchronous tuning of BWamp=55 MHz around f0=460 MHz. Transistor data are

Find the external components C0, L0, C1, L1, and the center frequency gain v2/Eg.

(99)
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Including the transistor model, a complete functional equivalent circuit for the amplifier

Fig.36

becomes the one shown in Fig.36 where the generator is changed to the Norton equivalent.

The two tuned circuits have equal bandwidths BW0 and quality factors Q0. Compensating for
bandwidth reduction, we get

At the input side, the parallel resistance R00 determines the impedance level and in turns give

(100)

the external components,

The corresponding calculations at the output side of the transistor read,

(101)

The inductances we have found here approaches the lower borderline for practical lumped

(102)

inductors. A guideline is that unwounded wires like component leads have inductances about
0.5nH/mm to 1nH/mm, a result that is verified in chap.4 of ref.[7]. The smallest inductor
available as a commercial component for surface mounting on PC-boards is presently 2nH.
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The impedances of the tuned circuits are equal to the parallel resistances at the center frequen-
cy, so the voltage gain becomes

The frequency characteristic of the amplifier is shown later in Fig.43.

(103)

Example II-5-1 end

The phase characteristic in synchronous tuning with N stages may be written

where the last equation introduces the Taylor expansion of tan-1(Ω). Instead of using Ω, which

(104)

is normalized with respect to the 3dB bandwidth of a single stage, we normalize frequency
with respect to the approximate 3dB bandwidth from Eq.(98) for the N stages in consideration.
The new frequency variable becomes

Inserting ΩN into the phase characteristic above gives

(105)

(106)

As N raises, the nonlinear third, fifth, and higher order terms loose significance compared to
the linear term. With more stages, the phase characteristic in the 3dB bandwidth |ΩN|<1
becomes more linear or - equivalently - the group delay stays more constant. The correspond-
ing amplitude characteristic approaches a Gaussian curve in the passband. To see this we
rewrite the amplitude expression using the fact that, cf.[8] p.228,

As bandwidth in measures of Ω reduces, the limit value is suited for large N, where we get

(107)
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(108)

The exponential gives a Gaussian characteristic due to the squaring of the frequency variable,
and the last version shows readily that the scaling from Eq.(105) gives 3dB limits with
ΩN=±1.

Butterworth Stagger Tuned Amplifiers

Each stage in a chain of amplifier stages provides a pole zero pattern corresponding
to its load impedance. Synchronous tuning let the poles and zeros from all stages coincide.
Staggering the pole-zero patterns gives provisions for a variety of amplification characteristics.
We shall demonstrate the concept of stagger tuning by picking a simple but common case, the
family of Butterworth characteristics of various order. They are defined by requiring maximal
flatness in magnitude, which means that derivatives with respect to frequency up to the order
2N-1 are zero in the center at Ω=0 6. The normalized N-th order Butterworth function is

Examples of the magnitude characteristics are given in the upper part of Fig.37. The 3dB

(109)

bandlimits corresponding to Ω=±1 are independent of order, but as N increases the roll-off
from the passband becomes more and more abrupt.

To find the pole patterns that give the normalized Butterworth characteristics, we start
considering the squared magnitude,

Tracing back from jΩ along the imaginary axis to the corresponding normalized complex

(110)

frequency variable S implies the substitutions

(111)

(112)

6 ) These and related concepts are part of the approximation problem in filter design.
Consult ref´s [1], [2], or [3] for further details including the multitude of cases that
are left out in this text.
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Solving for the S values that set the denominator equal to zero provides poles for the squared

Fig.37 Normalized Butterworth characteristics of orders up to N=5. The phases are deter-
mined from pole positions like Fig.39.

magnitude

The poles are confined to the unit circle where they are equally spaced with an angle of π/N.

(113)

When index k runs from 0 to 2N-1, all poles positions are covered once in the sequence
sketched by Fig.38.

Fig.38 Pole patterns in N-th order Butterworth squared magnitude |BN(S)|
2.
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The Butterworth amplitude characteristic applies to lowpass as well as bandpass
amplifiers. Both types may be realized using tuned LC circuits as interstage networks. The
lowpass case ease the discussion because we transform from the normalized frequency Ω to
the lowpass ω simply by multiplying with the bandwidth W3dB. Thus, to represent a causal
lowpass system, the basic requirements of having even real and odd imaginary parts along the
imaginary frequency axis are met by imposing the condition

so the squared amplitude function may be rewritten

(114)

By the last factorization, poles of |BN|
2 having positive real parts can be ascribed to BN(-S).

(115)

This assures that the transfer function BN(S), which is targeted in circuit design, fulfills a
necessary requirement of stability, as it only collects the N poles in the left half-plane. They
were given by the first N indices in Eq.(113), in summary

Pole positions in the second, third, and fourth order normalized Butterworth functions - also

(116)

called prototype functions - are detailed in Fig.39.

Poles sp,k in a bandpass amplifier of center frequency ω0 and bandwidth W3dB are

Fig.39 Examples of pole positions on the unit circle in normalized prototype Butterworth
functions BN(S).

related to the prototypes in Eq.(116) through the lowpass to bandpass transformation intro-
duced in section II-3. Without any assumptions they provide

(117)
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Under narrowband conditions, where W3dB/ω0 1, the square root is dominated by its second
term and the poles are approximated

Thus, in narrowband we scale the prototype to half the desired bandwidth and copy the pole

(118)

pattern from its lowpass center in origo to the bandpass centers at s=±jω0. This process is
demonstrated for a third order function in Fig.40.

To realize the third order Butterworth characteristics exemplified by Fig.40(b), we

Fig.40 Mapping of Butterworth prototype poles (a) to poles in a narrowbanded bandpass
amplifier (b). In (c) the poles are paired for stagger tuning that also requires three
zeros in origo.

Fig.41 Three stage tuned amplifier. By stagger tuning the pole pair of each resonance
circuit corresponds to at pole pair in the transfer function like the example in
Fig.40(c).

need three basic parallel tuned stages. The idea of stagger tuning is to adjust the load of each
stage to a required pole pair as indicated by Fig.40(c) and Fig.41. Fortunately, the parallel
resonance circuits insert the necessary zeros at origo. As discussed in section II-3 they are not
automatically encompassed by narrowband techniques. The sequence of pole pairs is arbitrary,
but if we choose to let stage k realize the pole pair define by sp,k in Eq.(118), its resonance
frequency ω0k and quality factor Qk are given by,
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Pole positions determine the shape of the frequency response but not the absolute amplifi-

(119)

cation level. The quantities ω0k,Qk constrain the tuning components by

It is a design decision to set the absolute impedance level. If the total amplifier is narrow-

(120)

banded in the sense of W3dB/ω0 1, each stage must be narrowbanded. By the approximation
from Eq.(46) the gain of stage k, which realizes pole pair sp,k becomes

The last rewriting is based on Eq.(118) and refers back to the prototype function poles on the

(121)

unit circle. At the center frequency ω=ω0, stage k has the voltage gain

In a complete chain of stages for a Butterworth characteristic, there is a real, negative center

(122)

frequency factor if the order is odd. The Sp,k’s in the remaining stages appear in complex
conjugated pairs, so the center frequency gain of a N-th order stagger tuned Butterworth
amplifier is given by

To elaborate further, the number of stages and an impedance strategy must be known.

(123)

Consider as an example a third order amplifier where all transistor transconductances and load
resistances are equal, gm0=gm1=gm2=gm and R0=R1=R2=Rp respectively. We observe from the
third order prototype in Fig.39 that the k=1 stage tunes to the center frequency. Using
Eq.(119) we get

The real values of poles with k=0 and k=2 are half the size of the k=1 pole, which gives

(124)

(125)
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Knowing all capacitances, Eq.(123) provides the center frequency gain in this particular setup

To estimate gain-bandwidth factors if loading capacitances differ among the stages, the one

(126)

with the smallest capacitance, i.e. the greatest single-stage GW, is commonly chosen as the
reference. In the present amplifier this is clearly the C1 stage, so we get

(127)

Example II-5-2 ( Butterworth amplifier )

By this example we change the components of the synchronously tuned amplifier from
Example II-5-1. Keeping bandwidth, center frequency, and impedance level specifications, the
frequency characteristic should now be of 2nd order Butterworth type. The task is to get the
new component values and calculate the center frequency gain.

First we find the required pole-positions. Assuming narrowband condition we consider the
pattern in the upper half-plane, Fig.42, where simple geometrical reflections give the coordi-
nates of the poles.

Fig.42

Associating the upper pole with the input circuit, the Q-factors of both tuned circuit are

(128)

Using resistance figures from Example II-5-1, the tuning components now become
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Recalling the discussion in the previous example, we are very close to practical bound on

(129)

(130)

small inductances. Note, however, that Example II-6-4 shows one way to transform so compo-
nent values stay practical. To find the center frequency gain Eq.(123) is used directly,

Compared to synchronous tuning, Eq.(103), maximal flatness halves the voltage gain.

(131)

Fig.43 Simulated voltage gain magnitude, phase, and group delay for the synchronously
and stagger tuned amplifiers in Examples II-5-1 and 2. Narrowband approximated
circuit data are used.

The synchronously tuned amplifier from Example II-5-1 is shown with the present stagger
tuned Butterworth amplifier in Fig.43. The curves are simulated results from the equivalent
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circuit in Fig.36 without further assumptions. It is therefore worth noticing how close we come
to the specifications regarding gain and bandlimits, although all underlying component
calculations were based on narrowband assumptions. The most visible consequence of the
simplifications is the lack of complete flatness in stagger tuning. Had the poles been correctly
found by solving Eq.(117) instead of the simpler scaling and copying approach in Eq.(118),
the result improves as will be seen below. From a design point of view it is dubious to go
further analytically. Practical component values need fine-tuning, either physically or by circuit
optimization, to compensate other design simplifications, for instance the employment of
uncomplicated transistor models or the ignorance of parasitic elements in the lay-out. The
simple narrowband methods give a good starting point for this process. However, in the
present context we shall enlighten the assumptions and approximations behind narrowband
methods whenever possible and therefore compare the previous result with their true counter-

Fig.44 Simulated voltage gain magnitude, phase, and group delay for stagger tuned
amplifier in Examples II-5-2. True pole positions are used to calculate circuit data.

parts. Applying prototype poles to Eq.(117) gives

Realize that by this calculation we give up the narrowband assumptions in the complete

(132)

Butterworth amplifier characteristics. To identify Q00,ω00 or Q11,ω11 from the pole positions,
narrowband assumptions about the individual stages are maintained. With Q-factors over 10,
Eq.(43) shows, that this is still a very satisfactory assumption. Having established the Q-factor
and resonance frequencies for the two stages, computations similar to Eqs.(129), (130) lead
to new components values,
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Fig.44 shows the simulated frequency response obtained by these data, and clearly the flatness

(133)

in magnitude has improved. The reason why group delay no longer gets symmetric appearance
is the fact, that the Butterworth characteristic is symmetric in the normalized frequency Ω, not
in ω with respect to which, the phase was differentiated.

Example II-5-2 end
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II-6 Transformers and Transformerlike Couplings

Needs for transforming signal and impedance levels in RF circuits are both frequent
and diversified, so a multitude of approaches and techniques are available for solving that sort
of problems. Among them are the conventional magnetically coupled transformer, which is
a highly useful component at frequencies up to approximately 3 GHz. We shall consider
transformers and circuits that behave similarly in some depth in this section. The scopes are
to gain basic understanding of advantages and limitations of transformer couplings, and to
provide a background for setting up simulator models. Some simulation programs are sparsely
equipped with the coupled inductor and transformer models that are needed in RF-design, so
they must be build from basic circuit functions and components.

Review of Mutual Inductances

Two or more inductors have mutual inductance if they interact through their magnetic
fields. To fix ideas we start considering two inductors where - as shown in Fig.45 - currents
are separately applied. Superposition of the two conditions gives the following expressions for
terminal voltages and the total magnetic fluxes Φ1 and Φ2 through the inductors,

The flux integrals condense in the inductances L1, L2, and the mutual inductances M12, M21.

(134)

Fig.45 Inductors with mutual inductance. Surfaces for the flux integrals are bounded by the
coils and lines through the terminals. Dots indicate orientation. Current entering a
dotted terminal support flux in the other coil.

They are factors of proportionality between inductor currents and the different flux
contributions. The factors are the elements of an inductance matrix, which finally gives the
two-port impedance matrix for two coupled inductors,

(135)
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Including more than two inductors, the equations are generalized to

Here v, Φ, and i are vectors holding the port voltages, fluxes, and currents respectively, while

(136)

L and Z are the inductance and impedance matrices. The inductance matrix is assumed to be
symmetric and positive definite or semidefinite. The first property expresses reciprocity, which
apply if the inductors have isotropic surroundings. It evolves from the renowned Lorentz
reciprocity theorem, [4] sec.2.12,4.5 , and causes the total magnetic energy to depend only
upon the instant current vector, no matter how it behaved in the past. The second property is
a passivity requirement ensuring that starting from zero initial conditions, the total stored
magnetic energy will always be positive or zero, [9] chap.15. In mathematical terms, the
requirements are that all subdeterminants of L, which can be taken symmetrically around the
diagonal, must be positive or zero, cf.[10] sec.7.2.

With two coupled inductors, the reciprocity and passivity conditions become

The limit cases of L1=0 or L2=0 implying M=0 are of no practical interest. Mutual inductanc-

(137)

(138)

es are often expressed by the coupling coefficient k,

In circuit schematics, mutual inductances may be represented as shown in Fig.46(a,b). If we

(139)

Fig.46 Inductors with (a) positive and (b) negative mutual inductances following the dot-
convention from Fig.45. The signal flow-graph represents the z-parameter matrix.

start fixing the orientations of the two ports, the sign of M and k is implicitly determined.
Applying a positive current to port one, M and k are positive if both port voltages are in
phase, negative if they are 180° out of phase. To emphasize phases rather than the more
arbitrary port orientation, the dot-convention, which defined flux directions in Fig.45, will also
tag a set of terminals that gives in-phase port voltages. Using port orientations opposite the
dot indication implies negative mutual inductances or couplings as shown in the figure.
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The borderline to passivity, |k|=1, is called tight or close coupling and is one goal
aimed upon when mutual inductances are employed in transformers. With k=±1 the two
voltage equations that stem from Eq.(135) become

However, the inductance matrix is singular in this case, so the two equations are linearly

(140)

related, and the lower equation follows from the upper one

The square root of the inductance ratio is called the winding or turns ratio N, because the

(141)

inductances of typical transformer coils are proportional to the squared number of windings,
cf.[7] sec.4.8. Equation (141) expresses the transformer voltage relationship

To share and confine the magnetic field, the inductances are often wound on a core of high

(142)

Fig.47 Toroidal transformer where both inductors share the same magnetic field.

permeability material, for instance a toroide like Fig.47. The phrases of tight or close cou-
plings refer to the fact, that the two inductors must encompass the same magnetic flux when
|k|=1. Suppose the two coils are similar so they have the same ratio AL between inductance
and the squared winding count,

With k=±1, the flux per winding in L2 that originates from current i1 equals in size the flux
per winding in L1,

(144)
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